Abstract

Atmospheric pollution is a critical issue in our society due to the continuous development of countries. Therefore, studies concerning atmospheric pollutants using multivariate statistical methods are widely available in the literature. Furthermore, machine learning has proved a good alternative, providing techniques capable of dealing with problems of great complexity, such as pollution. Therefore, this work used the Self-Organizing Map (SOM) algorithm to explore and analyze atmospheric pollutants data from four air quality monitoring stations in Salvador-Bahia. The maps generated by the SOM allow identifying patterns between the air quality pollutants (CO, NO, NO2, SO2, PM10 and O3) and meteorological parameters (environment temperature, relative humidity, wind velocity and standard deviation of wind direction) and also observing the correlations among them. For example, the clusters obtained with the SOM pointed to characteristics of the monitoring stations’ data samples, such as the quantity and distribution of pollution concentration. Therefore, by analyzing the correlations presented by the SOM, it was possible to estimate the effect of the pollutants and their possible emission sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.