Abstract
Imprecise articulation is the major issue reported in various types of dysarthria. Detection of articulation errors can help in diagnosis. The cues derived from both the burst and the formant transitions contribute to the discrimination of place of articulation of stops. It is believed that any acoustic deviations in stops due to articulation error can be analyzed by deriving features around the burst and the voicing onsets. The derived features can be used to discriminate the normal and dysarthric speech. In this work, a method is proposed to differentiate the voiceless stops produced by the normal speakers from the dysarthric by deriving the spectral moments, two-dimensional discrete cosine transform of linear prediction spectrum and Mel frequency cepstral coefficients features. These features and cosine distance based classifier is used for the classification of normal and dysarthic speech.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.