Abstract

Arginine and lysine methylation are widespread protein post-translational modifications. Peptides containing these modifications are difficult to retain using traditional reversed-phase liquid chromatography because they are intrinsically basic/hydrophilic and often fragment poorly during collision induced fragmentation (CID). Therefore, they are difficult to analyze using standard proteomic workflows. To overcome these caveats, we performed peptide separations at neutral pH, resulting in increased retention of the hydrophilic/basic methylated peptides before identification using MS/MS. Alternatively trifluoroacetic acid (TFA) was used for increased trapping of methylated peptides. Electron-transfer dissociation (ETD) mass spectrometry was then used to identify and characterize methylated residues. In contrast to previous reports utilizing ETD for arginine methylation, we observed significant amount of side-chain fragmentation. Using heavy methyl stable isotope labeling with amino acids in cell culture it was shown that, similar to CID, a loss of monomethylamine or dimethylamine from the arginine methylated side-chain during ETD can be used as a diagnostic to determine the type of arginine methylation. CID of lysine methylated peptides does not lead to significant neutral losses, but ETD is still beneficial because of the high charge states of such peptides. The developed LC MS/MS methods were successfully applied to tryptic digests of a number of methylated proteins, including splicing factor proline-glutamine-rich protein (SFPQ), RNA and export factor-binding protein 2 (REF2-I) and Sul7D, demonstrating significant advantages over traditional LC MS/MS approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.