Abstract

Allocation of time use is important to develop appropriate policies, especially in terms of gender equality. Individual well-being depends on many factors, including how time is spent. Therefore, knowing and analysing the time use and workload of academic staff is relevant for academic policy making. We analyse the responses of 703 Spanish academic staff regarding different activities of paid work and household work (unpaid). We use an innovative machine learning technique in this field, archetype analysis, which we introduce step by step while exploring our data. We identify five profiles, and we examine gender inequalities. The findings indicate that there is a higher prevalence of women in the profiles with a greater workload in household activities and teaching-related activities, but the prevalence is the same in the profile with a greater workload in research activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.