Abstract

The research work presents a computational methodology based on three-dimensional finite element model to simulate the gas tungsten arc welding (GTAW) of thin-walled cylinders. The aim was to study the effects of two basic welding parameters (welding speed and welding current) on weld induced residual stresses. The complex phenomenon of arc welding was numerically solved by sequentially coupled transient, non-linear thermo-mechanical analysis. The accuracy of the numerical model was validated through experiments for temperature distribution and residual stresses. The results reveals that the present simulation strategy can be used as a proper tool to get the optimized welding process parameters and minimize the in service failures of thinwalled structures due to residual stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.