Abstract

ABSTRACTIn the present article, a planar crack of arbitrary shape embedded in three-dimensional isotropic hygrothermoelastic media is investigated. Based on the general solutions and Hankel transform technique, the fundamental solutions for unit-point and extended displacement discontinuities (EDD; including the displacement discontinuities, moisture concentration discontinuity, and the temperature discontinuity) are derived. The EDD boundary integral equations for an arbitrarily shaped, planar crack in the hygrothermoelastic medium are established in terms of the EDD. Utilizing the boundary integral equation method, the singularities of near-crack front fields are analyzed, and the stress, moisture flux, and heat flux intensity factors are all derived in terms of the EDD. As a special case, the analytical solution for a penny-shaped crack under uniform combined loadings is presented. The EDD boundary element method is proposed for numerical simulation. The numerical result for a penny-shaped crack subjected to uniform mechanical–moisture–thermal loading is compared with the analytical solution to verify the correctness of the proposed method. Two coplanar elliptical cracks subjected to combined loadings are simulated as an application, and the influences of applied loadings and the ellipticity ratio are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.