Abstract

Abstract 3D ECT provides a lot of challenging computational issues that have been reported in the past by many researchers. Image reconstruction using deterministic methods requires execution of many basic operations of linear algebra, such as matrix transposition, multiplication, addition and subtraction. In order to reach real-time reconstruction a 3D ECT computational subsystem has to be able to transform capacitance data into image in fractions of seconds. By assuming, that many of the computations can be performed in parallel using modern, fast graphics processor and by altering the algorithms time to achieve high quality image reconstruction will be shortened significantly. The research conducted while analysing ECT algorithms has also shown that, although dynamic development of GPU computational capabilities and its recent application for image reconstruction in ECT has significantly improved calculations time, in modern systems a single GPU is not enough to perform many tasks. Distributed Multi-GPU solutions can reduce reconstruction time to only a fraction of what was possible on pure CPU systems. Nevertheless performed tests clearly illustrate the need for developing a new distributed platform, which would be able to fully utilize the potential of the hardware. It has to take into account specific nature of computations in Multi-GPU systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call