Abstract

Determination of the extent of peak rainfall for different return periods is an essential ingredient for the accurate design of hydraulic structures such as drains, dams and culverts as well as detection of flood risk areas. The focus of this study is to analyze annual maximum daily rainfall series in some selected sites within the coastal region of Nigeria using three parameter probability distribution models, namely, Generalized Logistics (GLO), Generalized Extreme Value (GEV) and Generalized Pareto (GPA) with the view of identifying the best fit probability distribution model per station that can be employed to estimate the rainfall magnitude for selected return periods. Specific time series analysis test, namely, detection of outlier and homogeneity test were performed to certify that the data utilized are adequate and suitable. Descriptive statistics such as sample mean, variance, standard deviation, kurtosis, skewness, and coefficient of variation were computed using basic statistical equations. The probability weighted moment parameters (b0, b1, b2 and b3), L-moment values (λ1, λ2, λ3 and λ4) and ratios (τ2, τ 3 and τ4) including the distribution parameters, namely, shape (k), scale (α) and location (ξ) parameters were computed based on L-moments procedures. To select the best-fit probability distribution model per station, carefully chosen goodness-of-fit statistics, namely, root mean square error, relative root mean square error, maximum absolute deviation index, maximum absolute error and probability plot correlation coefficient were employed since they can adequately assess the fitted distribution at a site. Results obtained indicate that the GLO is the best fit distribution for analyzing annual maximum daily rainfall series from Warri and Calabar while GPA for Port Harcourt and Uyo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.