Abstract

The paper focuses on the interaction mechanism caused by anionic polymer dispersants in dense silicon nitride and silicon carbide suspensions. An atomic force microscope (AFM) was used to determine the relationship between the macroscopic suspension viscosity and the microscopic structure adsorbing of a polymer dispersant at the solid/liquid interface. The surface interactions within the suspensions were analyzed under various dispersant pH values and additive conditions. The addition of an anionic polymer dispersant decreased the viscosity of silicon nitride and silicon carbide suspension and increased the electrosteric repulsive force on the non-oxide surface in solution at pH > 6, which was the isoelectric point of the materials. Based on the above results, we estimated the adsorption mechanism of anionic polymer dispersants on each solid surface in solution under relatively high pH conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.