Abstract

A simulation study was carried out to determine the impact of various design factors on the accuracy and precision with which population pharmacokinetic parameters are estimated in preclinical pharmacokinetic studies. A drug given by intravenous bolus injection and having mono-exponential disposition characteristics was assumed. The factors investigated were (i) number of animals sampled at specified times with one observation taken per animal, (ii) error in observed concentration measurements, and (iii) doubling the number of observations per animal while varying the number of animals. Data were analyzed with the NONMEM program, and the least number of animals per time point (where each animal supplied one concentration-time point) required for accurate and precise parameter estimation was determined. The one observation per animal design yielded biased and imprecise estimates of variability, and residual variability could not be estimated. Increasing the error in the concentration measurement led to a significant deterioration in the accuracy and precision with which variability was estimated. Obtaining a second sample from each animal practically eliminated bias and facilitated the partitioning of interanimal variability and residual intraanimal variability, by introducing information about the latter. Doubling the total number of observations per animal required using half (i.e., 50) the total number of animals required for accurate and precise parameter estimation with the one sample per animal design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call