Abstract

ABSTRACTThe extended displacement discontinuity (EDD) boundary integral equation and boundary-element method are extended and developed to analyze an arbitrarily shaped, planar interface crack in a three-dimensional, transversely isotropic, magnetoelectrothermoelastic bimaterial under combined, thermoelectromagnetomechanical loadings. The fundamental solutions for uniformly distributed EDDs applied over a constant triangular element are obtained through integrating the fundamental solutions for the unit-point EDDs given by Part 1 over the triangular area. To eliminate the oscillatory singularity near the crack front, the Dirac delta function in the integral–differential equations is approximated by the Gaussian distribution function, and accordingly, the Heaviside step function is replaced by the Error function. The extended stress intensity factors without oscillatory singularities, the energy release rate, and the local J-integral in terms of intensity factors are all obtained. To validate the solution, the EDD boundary-element method is proposed. As an application, an elliptical interface crack is numerically simulated. The influences of the applied combined loadings and material-mismatch as well as the ellipticity ratio on the multiphysical response are studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.