Abstract

ABSTRACTThe extended displacement discontinuity boundary integral–differential equation method is developed for the analysis of an interface crack of arbitrary shape in a three-dimensional (3D), transversely isotropic magnetoelectrothermoelastic bimaterial. The extended displacement discontinuities (EDDs) include conventional displacement discontinuities, electric potential discontinuity, magnetic potential discontinuity as well as temperature discontinuity across the interface crack faces, correspondingly, while the extended stresses represent conventional mechanical stresses, electric displacement, magnetic induction, heat flux, etc. By virtue of the potential functions and Hankel transformation technique, the fundamental solutions for unit-point EDDs on the interface in a 3D transversely isotropic magnetoelectrothermoelastic bimaterial are derived, then the extended displacements and stresses are all obtained in terms of EDDs. An analysis method is proposed based on the analogy with the solution in an isotropic thermoelastic bimaterial. The singular indices and the singular behaviors of the near crack-tip fields are studied. The combined extended stress intensity factors for three new fracture modes are derived in terms of the EDDs and are compared with those in magnetoelectroelastic bimaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.