Abstract

This paper deals with an infinite-capacity multi-server queueing system with a second optional service (SOS) channel. The inter-arrival times of arriving customers, the service times of the first essential service (FES) and the SOS channel are all exponentially distributed. A customer may leave the system after the FES channel with a probability (1−θ), or the completion of the FES may immediately require a SOS with a probability θ (0⩽θ⩽1). The formulae for computing the rate matrix and stationary probabilities are derived by means of a matrix analytical approach. A cost model is developed to simultaneously determine the optimal values of the number of servers and the two service rates at the minimal total expected cost per unit time. Quasi-Newton method and Particle Swarm Optimization (PSO) method are employed to deal with the optimization problem. Under optimal operating conditions, numerical results are provided from which several system performance measures are calculated based on the assumed numerical values of the system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.