Abstract
In the classification problem field, we often encounter many real application areas in which the data do not have an equitable distribution among the different classes of the problem. In such cases, we are dealing with the so-called imbalanced data sets. This scenario has significant interest since standard classifiers are often biased towards the majority classes, whereas the minority ones tend to have a higher reward as they usually define the concepts of interest from the learning point of view. The aim of this paper is to analyse the performance of CO 2RBFN, a evolutionary cooperative–competitive model for the design of radial-basis function networks applied to classification problems on imbalanced domains, and to study its cooperation with a well-known pre-processing method, the “synthetic minority over-sampling technique”. The good performance of CO 2RBFN is shown through an experimental study carried out on a large collection of imbalanced data sets where we compare, by means of a proper statistical study, the behaviour of our model with many representative neural networks algorithms, the C4.5 decision tree and a hierarchical fuzzy rule-based classification system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.