Abstract

We previously have genetically engineered an aerobic sulfate reduction pathway in Escherichia coli for the generation of hydrogen sulfide and demonstrated the pathway's utility in the precipitation of cadmium. To engineer the pathway, the assimilatory sulfate reduction pathway was modified so that cysteine was overproduced. Excess cysteine was then converted by cysteine desulfhydrase to an abundance of hydrogen sulfide, which then reacted with aqueous cadmium to form cadmium sulfide. In this study, observations of various E. coli clones were combined with an analysis of kinetic and transport phenomena. This analysis revealed that cysteine production is the rate-limiting step in the engineered pathway and provided an explanation for the phenomenon of cell surface precipitation. An analytical model showed that cadmium sulfide must form at the cell surface because the rate of cadmium sulfide formation is extremely fast and the rate of sulfide transport is relatively slow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.