Abstract

A benzene supercritical water oxidation (SCWO) mechanism, based on published low-pressure benzene combustion mechanisms and submechanisms describing the oxidation of key intarmediates, was developed and analyzed to determine the controlling reactions under SCWO conditions of 750–860 K, 139–278 bar, and equivalence ratios from 0.5 to 2.5. To adapt the combustion mechanims to the lower temperature ( 220 bar) conditions, new reaction pathways were added, and quantum Rice-Ramsperger-Kassel theory was used to calculate the rate coefficients and, hence, product selectivities for pressure-dependent reactions. The most important difference between the benzene oxidation mechanism for supercritical water conditions and those for combustion conditions is reactions in supercritical water involving C 6 H 5 OO predicted to be formed by C 6 H 5 reacting with O 2 . Through the adjustment of the rate coefficients of two thermal decomposition pathways of C 6 H 5 OO, whose values are unknown, the model accurately predicts the measured benzene and phenol concentration profiles at 813 K, 246 bar, stoichiometric oxygen, and 3–7 s residence time and reproduces the finding that the carbon dioxide concentration exceeds that of carbon monoxide at all reaction conditions and levels of benzene conversion. Comparison of the model predictions to benzene SCWO data measured at several different conditions reveals that the model qualitatively explains the trends of the data and gives good quantitative agreement without further adjustment of rate coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.