Abstract

Epitaxial growth of thin layers from the liquid phase can occur with the use of solutions saturated under different ambient gases. Most often this process takes place in a vacuum or gaseous atmosphere of hydrogen or argon. As the experimental data show, the morphology of crystallized layers is determined by the ambient type in which the process occurs.The cohesion energy responsible for epitaxial lateral deposition processes on the substrate surface depends on the surface free energy which is a measure of attraction of the solution atoms by substrate atoms. In the case of crystallization of an epitaxial lateral layer of Si on a substrate partially masked with dielectric, the chemical potentials of atoms in the neighboring phases (determining the interface evolution) are not without influence on the relaxation velocity of the saturated liquid phase, and on the horizontal and vertical growth rate.The aim of the investigation was to analyze experimentally the influence of the ambient gases used during the LPE growth on the cohesion of the Sn–Si solution with substrates applied for the lateral epitaxial growth of Si layers. This work presents comparative temperature analysis of the wetting angle of such surfaces as Si, SiO2 and SiNx by the Sn–Si solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.