Abstract

Nowadays, the finite element method is still the first choice of researchers in metal extrusion analysis. However, recent published papers have also supported that metal plastic flow can be modelled by the flow formulation, employing the finite volume method. In this work, the numerical scheme presented by Martins et al. [16] based on finite volume method together with the explicit MacCormack numerical method, was used to analyse aluminum axisymmetric direct extrusion in a 90° die. A structured, fixed and collocated mesh and numerical convergence based on the SIMPLE method were employed to attain pressure-velocity coupling. The main goal of present numerical scheme was to obtain the axial and radial velocities and pressure distributions. From these results, it was possible to obtain and identify the dead zone inside the billet deformation region in direct extrusion of aluminum in a 90° die. The field variables results shown in present work had good agreement when compared with those from literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.