Abstract
All-sky airglow imagers (ASAIs) are used in the Meridian Project to observe the airglow in the middle and upper atmosphere to study the atmospheric perturbation. However, the ripples of airglow caused by the perturbation are only visible in the airglow images taken on a clear night. It is a problem to effectively select images suitable for scientific analysis from the enormous amount of airglow images captured under various environments due to the low efficiency and subjectivity of traditional manual classification. We trained a classification model based on convolutional neural network to distinguish between airglow images from clear nights and unclear nights. The data base contains 1688 images selected from the airglow images captured at Xinglong station (40.4° N, 30.5° E). The entire training process was tracked by feature maps which visualized every resulting classification model. The classification models with the clearest feature maps were saved for future use. We cropped the central part of the airglow images to avoid disturbance from the artificial lights at the edge of the vision field according to the feature maps of our first training. The accuracy of the saved model is 99%. The feature maps of five categories also indicate the reliability of the classification model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.