Abstract
Analyses have indicated that improved control strategies could reduce the threat posed by the presence of microburst-type wind shear during aircraft takeoffs and landings. The attenuation of flight path response to microburst inputs by feedback control to elevators and throttle was studied for the cases of a jet transport and a general aviation aircraft, using longitudinal equations of motion, root locus analysis, Bode plots of altitude response to wind inputs, and nonlinear numerical simulation. Energy management relative to the airmass, a pitch-up response to the decreasing airspeed, increased phugoid mode damping, and decreased phugoid natural frequency, are found to improve microburst penetration aircraft behavior. Aircraft stall, and throttle saturation, are limiting factors in an aircraft's ability to maintain a given flight path during a microburst encounter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.