Abstract

A theoretical model is proposed to analyze the fabrication of metal nanopartical resist by metal nanofilm annealing, which is used in the manufacture of the transmission-enhanced subwavelength structures at the interface of the optical glass. Based on the conservation of volume of the metal before annealing and after heat treatment, the theoretical relationships of the structure parameters between the metal nanofilm and the metal nanoparticles are obtained. The experimental results coincide well with the theory model, which offers a theoretical guidance to fabricate subwavelength antireflected structures with the advantage of low cost achieved through metal nanofilm annealing. By this means, the average transmission of the quartz device intensifies to 97.9% for the structures fabricated on the both sides compared with the 93% for the unstructured one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.