Abstract

The heterogeneity found in many cell types has greatly inspired research in single-cell gene and protein profiling for discovering the origin of heterogeneity and its role in cell fate decisions. Among the existing techniques to probe heterogeneity, atomic force microscopy (AFM) utilizes an antibody/ligand-modified tip to explore the distribution of a target membrane protein on individual cells in their native environment. In this paper, we establish a practical model to analyze the data systematically, and attempt the quantification of membrane protein abundance on single cells by taking account issues, such as the level of nonspecific interaction, the probe resolution, and the reproducibility of detecting protein distribution. We demonstrated the application in examining the heterogeneous distribution and the local protein abundance of TRA-1-81 antigen on human embryonic stem (hES) cells at the subcellular level. Heterogeneity in TRA-1-81 expression was also detected at the single cell level, suggesting the presence of subpopulation cells within an undifferentiated hES cell colony. The method provides a platform to unveiling the correlation between heterogeneity of membrane proteins and cell development in a complex cell community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.