Abstract
Quantitative estimates were computed for exponential coefficients and rate constants contributing to afferent unit impulse responses obtained from bundles innervating specific regions of the semicircular canal. The grouping of these estimates into specific response classes provided quantitative correlations with specific anatomical regions of innervation of the crista. Linear system gain and phase spectra were computed also, by applying Fourier transformations to unit impulse responses, for purposes of comparison with previous studies employing frequency domain analyses. Responses fitted by third-order linear system equations were specific to afferents innervating the crest and transition regions of the crista; whereas those fitted by overdamped, second-order equations were specific to afferents innervating the slopes and transition crista regions. It was concluded that strictly mechanical models of the transduction process are inadequate to account for the diverse and spatially distributed classes of observed responses and, moreover, structural features such as different hair cell types or efferent innervation effects could be excluded as inoperative in this preparation. The alternative hypothesis was suggested that certain of the observed subcomponents could be direct reflections of the initial mechanical stimulus, but that other subcomponents were reflections of more complex filtering mechanisms operating at the cellular or synaptic levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.