Abstract
The small-signal linear characteristics of afferent responses from the isolated semicircular canal were described by the use of white-noise rotational acceleration inputs. The results, based on cross-correlation analysis, showed a striking and systematic variation in linear system impulse response characteristics from afferents which innervated different regions of the receptor. Afferents from centrally located nerve bundles innervating the crest region of the crista exhibited an initial maximum response amplitude followed by a rapid decay. In contrast, afferents from extreme rostral and caudal nerve bundles innervating the crista slopes exhibited an initial rise up to a low-amplitude maximum followed by a slower decay. These results imply that the afferents innervating a single canal do not merely carry redundant information concerning current head acceleration, but could be considered an ensemble of specific classes of filters that are tuned individually to specific classes of head movements. On the basis of these considerations, a new hypothesis of matched filter detection was proposed as relevant to information processing and dynamic control in central vestibular pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.