Abstract
Clustering analysis is a promising data-driven method for the analysis of functional magnetic resonance imaging (fMRI) data. The huge computation load, however, makes it difficult for the practical use. We use affinity propagation clustering (APC), a new clustering algorithm especially for large data sets to detect brain functional activation from fMRI. It considers all data points as possible exemplars through the minimisation of an energy function and message-passing architecture, and obtains the optimal set of exemplars and their corresponding clusters. Four simulation studies and three in vivo fMRI studies reveal that brain functional activation can be effectively detected and that different response patterns can be distinguished using this method. Our results demonstrate that APC is superior to the k-centres clustering, as revealed by their performance measures in the weighted Jaccard coefficient and average squared error. These results suggest that the proposed APC will be useful in detecting brain functional activation from fMRI data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.