Abstract

Analyses of acoustic wave propagation in a model power transformer are presented in the paper. The acoustic wave is induced by partial discharges that are simulated at predefined coordinates in the core and winding. Propagation of the numerical calculated acoustic wave is analyzed within the transient state. Achieved results indicate that the space and time distributions of the acoustic pressure depend on the induction position. Furthermore, a greater pressure gradient is observed in domains with higher speed of sound while the largest amplitude occurs at the vicinity of the induction position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.