Abstract

Abstract Acid rain is a major regional-scale environmental problem in China. To control acid rain pollution and to protect the ecological environment, it is urgent to document acid rain patterns in various regions of China. Taking Liaoning Province as the study area, the present work focused on the spatial and temporal variations of acid rains in northeastern China. It presents a means for predicting the occurrence of acid rain using geographic position, terrain characteristics, routinely monitored meteorological factors and column concentrations of atmospheric SO 2 and NO 2. The analysis applies a decision tree approach to the foregoing observation data. Results showed that: (1) acid rain occurred at 17 stations among the 81 monitoring stations in Liaoning Province, with the frequency of acid rain from 0 to 84.38%; (2) summer had the most acid rain occurrences followed by spring and autumn, and the winter had the least; (3) the total accuracy for the simulation of precipitation pH (pH ≤ 4.5, 4.5 5.6) was 98.04% using the decision tree method known as C5. The simulation results also indicated that the distance to coastline, elevation, wind direction, wind speed, rainfall amount, atmospheric pressure, and the precursors of acid rain all have a strong influence on the occurrence of acid rains in northeastern China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call