Abstract

The process of surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) followed by high-performance liquid chromatography-UV detection was successfully applied for the extraction and determination of selected cannabinoids (cannabidiol, Δ(9)-tetrahydrocannabinol, and cannabinol) in urine samples. The effective parameters on the extraction efficiency were studied and optimized utilizing two different optimization methods: one variable at a time (OVAT) and face center design (FCD). Under the optimum conditions (extraction solvent and its volume, toluene, 85 μL; disperser agent and its concentration, 1.0 mL of ultra-pure water containing 0.5 mmol/L tetradecyl tremethyl ammonium bromide (TTAB); sample pH, 2.0 and salt concentration, 11% w/v NaCl), the limits of detection of the method were in the range of 0.1-0.5 μg/L and the repeatability and reproducibility of the proposed method, expressed as relative deviation, varied between 4.1 and 8.5% and 6.7 and 11.6%, respectively. Linearity was found to be in the range of 1.0-200 μg/L and under the optimum conditions, the preconcentration factors (PFs) were between 190 and 292. This proposed method was successfully applied in the analysis of three male advocate urine samples and good recoveries were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call