Abstract

Because Ty elements transpose through an RNA intermediate, element accumulation through retrotransposition must be regulated or offset by element loss to avoid uncontrolled genome expansion. Here we examine the fate of Ty sequences in Saccharomyces strain 337, a strain that is reported to lack Ty1 and Ty2 elements, but contains remnant solo long terminal repeats (LTRs). Although strain 337 was initially classified as Saccharomyces cerevisiae, our work indicates that this strain is more closely related to S. paradoxus. Several degenerate Ty1 and Ty2 LTRs were mapped to the same insertion sites as full-length Ty1 and Ty2 elements in S. cerevisiae, suggesting that this strain lost Ty elements by LTR-LTR recombination. Southern analysis indicates that strain 337 also lacks Ty4 and Ty5 elements. We estimated the rates of element gain and loss in this strain by introducing a single transposition-competent Ty1 element. The results indicate that Ty1 retrotransposition occurs at a much higher rate than elimination, suggesting that copy-number-dependent co-factors or environmental conditions contribute to the loss of Ty elements in this genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call