Abstract

In this paper, a two-patch SIS model with saturating contact rate and one-directing population dispersal is proposed. In the model, individuals can only migrate from patch 1 to patch 2. The basic reproduction number $ R_0^1 $ of patch 1 and the basic reproduction number $ R_0^2 $ of patch 2 is identified. The global dynamics are completely determined by the two reproduction numbers. It is shown that if $ R_0^1 < 1 $ and $ R_0^2 < 1 $, the disease-free equilibrium is globally asymptotically stable; if $ R_0^1 < 1 $ and $ R_0^2 > 1 $, there is a boundary equilibrium which is globally asymptotically stable; if $ R_0^1 > 1 $, there is a unique endemic equilibrium which is globally asymptotically stable. Finally, numerical simulations are performed to validate the theoretical results and reveal the influence of saturating contact rate and migration rate on basic reproduction number and the transmission scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.