Abstract

This paper presents a theoretical analysis of the recently realized tuneable coupler for superconducting phase qubits (R. C. Bialczak et al., Ref.\ \protect\onlinecite{Bialczak}). The coupling can be turned off by compensating a negative mutual inductance with a tuneable Josephson inductance. The main coupling in this system is of the $XX$ type and can be zeroed exactly, while there is also a small undesired contribution of the $ZZ$ type. We calculate both couplings as functions of the tuning parameter (bias current) and focus on the residual coupling in the OFF regime. In particular, we show that for typical experimental parameters the coupling OFF/ON ratio is few times $10^{-3}$, and it may be zeroed by proper choice of parameters. The remaining errors due to physical presence of the coupler are on the order of $10^{-6}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.