Abstract
We propose a diffuse interface model to describe a tumor as a multicomponent deformable porous medium. We include mechanical effects in the model by coupling the mass balance equations for the tumor species and the nutrient dynamics to a mechanical equilibrium equation with phase-dependent elasticity coefficients. The resulting PDE system couples two Cahn–Hilliard type equations for the tumor phase and the healthy phase with a PDE linking the evolution of the interstitial fluid to the pressure of the system, a reaction-diffusion type equation for the nutrient proportion, and a quasistatic momentum balance.We prove here that the corresponding initial-boundary value problem has a solution in appropriate function spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.