Abstract
One major challenge to the usability of implants in total knee replacement (TKR) surgery is the limited of the postoperative knee joint loading data; therefore, the ability to continuously monitor these loads is an attractive concept. Integrating an energy harvester to scavenge the energy from human motion enables this monitoring. Recently, Triboelectric Generators have gained attention for energy harvesting because of their flexibility and easy fabrication processes. We investigate a triboelectric energy harvester for load sensing of TKR under simulated gait loading. The performance of triboelectric harvester prototypes was measured under simulated gait loading using a VIVO joint motion simulator. During cyclical loading, triboelectric harvesters undergo a contact and separation mechanism, which led to a voltage potential being generated. The power output is related to the amount of compressive load and the frequency. Therefore, the output power can be used to estimate joint loading and can act as a load-sensing implant component. Aiming to include biocompatible materials, we evaluated the performance of titanium as the triboelectric layer and showed the output is higher compared to Aluminum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.