Abstract
We analyze a highly nonlinear system of partial differential equations related to a model solidification and/or melting of thermoviscoelastic isochoric materials with the possibility of motion of the material during the process. This system consists of an internal energy balance equation governing the evolution of temperature, coupled with an evolution equation for a phase field whose values describe the state of material and a balance equation for the linear moments governing the material displacements. For this system, under suitable dissipation conditions, we prove global existence and uniqueness of weak solutions. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.