Abstract
Three-phase DC/AC power electronics converter systems used in battery-powered variable-speed drive systems or employed in three-phase mains-supplied battery charger applications usually feature two power conversion stages. In both cases, typically a DC/DC stage is attached to a three-phase DC/AC stage in order to enable buck-boost functionality and/or a wide input-output voltage operating range. However, a two-stage solution leads to a high number of switched bridge-legs and hence, results in high switching losses, if the degrees of freedom available for controlling the overall system are not utilised. If the DC/DC stage is used to vary the DC link voltage with six times the AC-side frequency, a pulse width modulation (PWM) of always only one phase of the DC/AC stage is sufficient to achieve three-phase sinusoidal output currents. The clamping of two phases (denoted as 1/3 PWM) leads to a drastic reduction of the DC/AC stage switching losses, which is further accentuated by a DC link voltage which is lower than for the conventional modulation schemes. This paper details the operating principle of a three-phase buck-boost converter system using 1/3 PWM and outlines an appropriate control system design. Subsequently, the switching losses and the voltage/current stresses on the converter components are analytically derived. There, a more than 66% reduction of the DC/AC stage switching losses is calculated without any increase of the stress on the remaining converter components. The theoretical considerations are finally verified on a hardware demonstrator, where the proposed modulation strategy is experimentally compared against several conventional modulation techniques and its clear performance advantages are validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CPSS Transactions on Power Electronics and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.