Abstract
A model for the sterile insect release method of pest control in which the target species is under predatory or parasitic regulation is analyzed. The equations are nondimensionalized and the rescaled parameters are interpreted. There are four types of equilibria, whose existence and stability depend on which of ten regions of parameter space contain the rescaled parameters, and in turn give minimal release rates to achieve eradication of the pest. In at least one region, Hopf bifurcation theory shows the existence of limit cycles, but they are found to be unstable. In addition, the optimal release rate to minimize a total cost functional for pest control by the sterile release method is studied. Both approaches show that when predation accounts for a large fraction of the natural deaths, the necessary release rate and total cost are higher than for weak predation. If the predators are removed without being replaced by any other source of mortality, the cost rises in all cases but rises much more dramatically for cases with strong predation. A definite danger of the sterile release method when some predatory control exists is that the predators are frequently driven extinct before the prey, so that the target species could explode to much higher levels and be more difficult to eradicate again after the sterile release is terminated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.