Abstract

In this paper, we propose and investigate a memory-based reaction-diffusion equation with nonlocal maturation delay and homogeneous Dirichlet boundary condition. We first study the existence of the spatially inhomogeneous steady state. By analyzing the associated characteristic equation, we obtain sufficient conditions for local stability and Hopf bifurcation of this inhomogeneous steady state, respectively. For the Hopf bifurcation analysis, a geometric method and prior estimation techniques are combined to find all bifurcation values because the characteristic equation includes a non-self-adjoint operator and two time delays. In addition, we provide an explicit formula to determine the crossing direction of the purely imaginary eigenvalues. The bifurcation analysis reveals that the diffusion with memory effect could induce spatiotemporal patterns which were never possessed by an equation without memory-based diffusion. Furthermore, these patterns are different from the ones of a spatial memory equation with Neumann boundary condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call