Abstract

Semiparametric mixture regression models have recently been proposed to model competing risks data in survival analysis. In particular, Ng and McLachlan (Stat Med 22:1097–1111, 2003) and Escarela and Bowater (Commun Stat Theory Methods 37:277–293, 2008) have investigated the computational issues associated with the nonparametric maximum likelihood estimation method in a multinomial logistic/proportional hazards mixture model. In this work, we rigorously establish the existence, consistency, and asymptotic normality of the resulting nonparametric maximum likelihood estimators. We also propose consistent variance estimators for both the finite and infinite dimensional parameters in this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.