Abstract
The Mode I stress intensity factor of a sector crack in a three-dimensional Voronoi polycrystal is computed by the body force technique. Microstructural stresses arising from the elastic anisotropy of grains (cubic and hexagonal) and the random grain orientations are estimated using the Eshelby procedure and incorporated in the stress intensity factor calculations. For metallic polycrystals, it is shown that the stress intensity factor depends significantly on the elastic anisotropy ratio, the grain orientations, the remote stress state, and the microstructural stresses. [S0021-8936(00)03401-2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.