Abstract

Monsoon coastal cities often suffer from extreme rain-induced flooding and severe hazard. However, the associated physical mechanisms and detailed storm structures are poorly understood due to the lack of high-resolution data. This study presents an analysis of a thunderstorm that produces extreme hourly rainfall (EXHR) of 219 mm over the Guangzhou megacity on the southern coast of China using integrated multiplatform observations and a four-dimensional variational Doppler radar analysis system. Results indicate that weak environmental flows and convectively generated weak cold pool facilitate the formation of a quasi-stationary storm, while onshore warm and moist flows in the boundary layer (BL) provide the needed moisture supply. The 219-mm EXHR is attendant by a shallow meso- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> -scale vortex due to stretching of intense latent heating-induced convergence, which, in turn, helps organize convective updrafts into its core region. Lightning and dual-polarization radar observations reveal active warm-rain (but weak mixed-phase) microphysical processes, with raindrop size distribution (RSD) closer to marine convection. In contrast, another storm develops about 4 h earlier and only 35 km to the northwest, but with more lightning, higher cloud tops, more graupel and supercooled liquid water content, more continental RSD, little evidence of rotation, and much less rainfall; they are attributable to the presence of larger convective available potential energy resulting from the urban heat island effects and less moisture supply in the BL. These results highlight the importance of using multisource remote sensing data sets in understanding the microphysical and kinematic structures of EXHR-producing storms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.