Abstract

Due to the nonlinearity and fractional order of equation, there are a few efficient numerical methods in the literature with stability and convergence analysis for the solution of nonlinear time fractional partial differential equations. The aim of this paper is to construct and analyze an efficient numerical method for the solution of time fractional Burgers equation. The proposed method is based on a finite difference scheme in time and the Chebyshev spectral collocation method in space. We discuss the stability and convergence of the proposed method and show that the method is unconditionally stable and convergent with order $${\mathcal {O}}(\tau ^2+N^{-s})$$ where $$\tau $$ , N, and s are time step size, number of collocation points, and regularity of exact solution, respectively. The numerical results are reported in terms of accuracy, computational order, and CPU time to confirm the efficiency of proposed method. It is illustrated that the numerical results are in good agreement with the theoretical ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.