Abstract

AbstractThis paper proposes and studies the performance of a preconditioner suitable for solving a class of symmetric positive definite systems, Âx=b, which we call p‐level lower rank extracted systems (p‐level LRES), by the preconditioned conjugate gradient method. The study of these systems is motivated by the numerical approximation of integral equations with convolution kernels defined on arbitrary p‐dimensional domains. This is in contrast to p‐level Toeplitz systems which only apply to rectangular domains. The coefficient matrix, Â, is a principal submatrix of a p‐level Toeplitz matrix, A, and the preconditioner for the preconditioned conjugate gradient algorithm is provided in terms of the inverse of a p‐level circulant matrix constructed from the elements of A. The preconditioner is shown to yield clustering in the spectrum of the preconditioned matrix which leads to a substantial reduction in the computational cost of solving LRE systems. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call