Abstract

Abstract The D7 cDNA clone hybridizes to a 2.8 kb mRNA which first appears at the mound stage of development in the cellular slime mold Dictyostelium discoideum. This gene which is cyclic AMP (cAMP) inducible and is expressed specifically in the prespore cells contains an open reading frame interrupted by only one intron. The predicted amino acid sequence indicates a novel prespore protein which differs from all of the previously described prespore proteins in that it contains no internal repeats and does not share any homology with any of the other prespore genes. The amino acid sequence predicts a protein of 850 amino acids with a molecular weight of 95,343 daltons and an isoelectric point of 4.25. The protein is very rich in glutamine (13.8%), asparagine (10.6%) and glutamic acid (10.4%) with one potential glycosylation site and 28 possible sites for phosphorylation. The amino terminus is hydrophobic with characteristics of a signal sequence while the entire carboxyl half of the protein is notable for its hydrophilicity. Comparison of cAMP regulation of the D7 gene with the regulation of two other cAMP regulated prespore genes, the PL3(SP87) gene and the Psa(D19), reveals some striking differences. Disaggregation in the presence of cAMP results in transient degradation of mRNA for all three genes. The transcription rate for the D7 and PsA(D19) genes remains relatively unaffected by disaggregation but there is a rapid although transient decline in the transcription rate of the PL3(SP87) gene. Although the accumulation of all three mRNAs is first detectable at mound stage, transcription of the D7 and PsA(D19) genes is detected earlier in development, at rippling aggregate stage several hours prior to the earliest time when transcription of the PL3(SP87) gene is detected. Analysis of the promoter region of the D7 gene reveals three CA like boxes flanked by direct repeats as well as four G rich regions that may serve as regulatory elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.