Abstract

Most dynamic models describing population evolution contain one or more parameters. The parameters are treated as fixed constants and qualitative results, such as stability of equilibria, are calculated using this assumption. In reality, however, the parameters are mathematically evaluated by statistical methods in which the error is decreased over a number of calculations. Therefore, the parameter is a sequence converging to the actual parameter value as time goes to infinity. In this article we consider the kth-order discrete Nicholson Blowfly model, N n+1 = F( P, δ, N n ,…, N n− k ) where δ and P are parameters. For a particular range of parameter values, global stability results are well known. The general form of the discrete dynamical system is now rewritten as N n+1 = F( P n , δ n , N n ,…, N n− k ) where P n and δ n converge to the parametric values P and δ. We show that when the parameters are replaced by sequences, the stability results of the original system still hold. This technique may be of general interest to those studying evolutionary systems in which the parameters are not fundamental constants but sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.