Abstract

We present and analyze a new space-time parallel multigrid method for parabolic equations. The method is based on arbitrarily high order discontinuous Galerkin discretizations in time and a finite element discretization in space. The key ingredient of the new algorithm is a block Jacobi smoother. We present a detailed convergence analysis when the algorithm is applied to the heat equation and determine asymptotically optimal smoothing parameters, a precise criterion for semi-coarsening in time or full coarsening, and give an asymptotic two grid contraction factor estimate. We then explain how to implement the new multigrid algorithm in parallel and show with numerical experiments its excellent strong and weak scalability properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.