Abstract

In this paper we propose and analyze a new mixed finite element method for a stationary magneto-hydrodynamic (MHD) model. The method is based on the utilization of a new dual-mixed formulation recently introduced for the Navier-Stokes problem, which is coupled with a classical primal formulation for the Maxwell equations. The latter implies that the velocity and a pseudostress tensor relating the velocity gradient with the convective term for the hydrodynamic equations, together with the magnetic field and a Lagrange multiplier related with the divergence-free property of the magnetic field, become the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the aforementioned pseudostress tensor, discontinuous piecewise polynomial elements of degree k for the velocity, Nédélec elements of degree k for the magnetic field and Lagrange elements of degree k for the associated Lagrange multiplier. The analysis of the continuous and discrete problems are carried out by means of the Lax–Milgram lemma, the Banach–Nečas–Babuška and Banach fixed-point theorems, under a sufficiently small data assumption. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption on mesh. We also develop an a priori error analysis and show that the proposed finite element method is optimal convergent. Finally, some numerical results illustrating the good performance of the method are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call