Abstract
This study involved an optimization, numerical analysis of a network for two-hand multi-finger force production, analogous in its structure to the double-representation mirror image (DoReMi) network suggested earlier based on neurophysiological data on cortical finger representations. The network accounts for phenomena of enslaving (unintended finger force production), force deficit (smaller force produced by a finger in multi-finger tasks as compared to its single-finger task), and bilateral deficit (smaller forces produced in two-hand tasks as compared to one-hand tasks). Matrices of connection weights were computed, and the results of optimization were compared to the experimental data on finger forces during one- and two-hand maximal force production (MVC) tasks. The network was able to reproduce the experimental data in two-hand experiments with high accuracy (average error was 1.2 N); it was also able to reproduce findings in one-hand multi-finger MVC tasks, which were not used during the optimization procedure, although with a somewhat higher error (2.8 N). Our analysis supports the feasibility of the DoReMi network. It suggests that within-a-hand force deficit and bilateral force deficit are phenomena of different origins whose effects add up. Is also supports a hypothesis that force deficit and enslaving have different neural origins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.