Abstract
We consider an evolution system modeling a flow of colloidal particles which are suspended in an incompressible fluid and accounts for colloidal crystallization. The system consists of the Navier–Stokes equations for the volume averaged velocity coupled with the so-called Phase-Field Crystal equation for the density deviation. Considering this system in a periodic domain and assuming that the viscosity as well as the mobility depend on the density deviation, we first prove the existence of a weak solution in dimension three. Then, in dimension two, we establish the existence of a (unique) strong solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.