Abstract

This paper considers a multigrid algorithm suitable for efficient solution of indefinite linear systems arising from finite element discretization of time harmonic Maxwell equations. In particular, a backslash multigrid cycle is proven to converge at rates independent of refinement level if certain indefinite block smoothers are used. The method of analysis involves comparing the multigrid error reduction operator with that of a related positive definite multigrid operator. This idea has previously been used in multigrid analysis of indefinite second order elliptic problems. However, the Maxwell application involves a nonelliptic indefinite operator. With the help of a few new estimates, the earlier ideas can still be applied. Some numerical experiments with lowest order Nedelec elements are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.