Abstract

We analyse convergence of a micro–macro acceleration method for the simulation of stochastic differential equations with time-scale separation. The method alternates short bursts of path simulations with the extrapolation of macroscopic state variables forward in time. After extrapolation, a new microscopic state is constructed, consistent with the extrapolated macroscopic state, that minimises the perturbation caused by the extrapolation in a relative entropy sense. We study local errors and numerical stability of the method to prove its convergence to the full microscopic dynamics when the extrapolation time step tends to zero and the number of macroscopic state variables tends to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.